
United Kingdom and Ireland
Programming Contest 2024

Problems

A Amalgram
B Budget Analysis
C Cross Country
D Drone Control
E Eradication Sort
F Finding Suspicious Proteins
G Word Search
H Hedge Topiary
I Inconsistent Patterns
J Jabber Network
K Knitting
L Leg Day

Problems are not ordered by difficulty.
Do not open before the contest has started.

This page is intentionally left (almost) blank.

Problem A
Amalgram

An anagram is any arrangement of the letters of a word in which each letter of the
alphabet occurs exactly as many times as in the original. For example, clarinets is an
anagram of larcenist.

An amalgram is any arrangement of the letters of two words in which each letter of
the alphabet occurs at least as many times as in either of the originals. For example,
administration is an amalgram of mantis and raisin, although not the shortest
possible because the letter d appears in neither.

Given two words, invent an amalgram for them that contains as few letters as possible.

Input
• One line containing lowercase Latin letters representing the word a (1 ≤ |a| ≤ 106).

• One line containing lowercase Latin letters representing the word b (1 ≤ |b| ≤ 106).

Output
Output a minimally-long sequence of letters that represents an amalgram of a and b. If
there are multiple answers, you may output any of them. Your answer will be judged as
correct if it contains at least all of the letters of a and all of the letters of b, and there is
no other possible answer that could be shorter.

Sample Input 1 Sample Output 1
hello
world

wordhell

Sample Input 2 Sample Output 2
unclear
instructions

lensrustication

Sample Input 3 Sample Output 3
boring
boring

boring

This page is intentionally left (almost) blank.

Problem B
Budget Analysis

You are an analyst, studying the relationship between advertisement budget spending
(denoted by x) and sales (denoted by y) over the period of n months. More specifically,
for every month of time from 1 to n you have the value of spending xi and sales yi.

To quantify the relationship you are using linear regression with regularisation, which
means that you are modelling y as y = Kx + B, where K and B are real numbers
minimising the penalty function:

p(K,B) =
∑(

(K · xi +B − yi)
2
)
+ λ · (K2 +B2)

(Note: this is the standard penalty function for L2 regularised linear regression.)

For the report requested by your manager, you need to make several predictions. More
specifically, you have a list of prediction queries, each described by four numbers — Lj,
Rj, λj and Xj. To process such a query you need to perform the following steps:

• take the spending and sales values for the months from Lj to Rj inclusive;

• find the coefficients K and B, which minimise the penalty function for the given
regularisation coefficient λj;

• plug the Xj into the resulting model and compute the prediction.

You are given the ads spending and sales data, and the prediction queries descriptions.
You are to process the queries and output the predictions.

Input
First line of the input file contains an integer number n (2 ≤ n ≤ 106) denoting the
number of months in the period you are studying.

Each of the following n lines describes one month and contains two non-negative real
numbers xi and yi not exceeding 10. They denote the budget spending and sales in the
corresponding month.

The following line contains an integer number m (1 ≤ m ≤ 106) denoting the number
of predictions to be made. Each of the following m lines contains four numbers: Lj, Rj,
lambdaj and Xj (1 ≤ Lj < Rj ≤ n, 0 ≤ λj, Xj ≤ 10). First two of them are integers, the
remaining are real.

Output
For each prediction query output one real number on a separate line — the predicted
sales assuming the advertisement spending is Xj and the linear model has been fitted
on months from Lj to Rj using L2-regularisation with λj regularisation coefficient. The
output must be accurate to an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
5
1 2
3 4
5 6
7 8
9 0
2
1 3 0 10
1 5 1 10

11
4.90566037735849125

Sample Input 2 Sample Output 2
3
1 1.0
2 2.1
3 2.8
3
1 2 0 1.5
2 3 0 2.5
1 3 0 1.5

1.55
2.45
1.516666666666667

Problem C
Cross Country

Cross-country running is a sport in which contestants run a race on an open-air course over
natural terrain. To record contestants’ progress, the organisers set up RFID checkpoints
that each span a line across part of the course.

A contestant has finished the race once they go through all of the checkpoints in order
from 1 to n. Crossing a checkpoint out of order conveys no advantage or penalty to a
runner, as they simply have to cross it again later at the right time. Thus, for example,
a runner may choose to cross a checkpoint once and then immediately cross it again in
another direction if it leads to a quicker finish.

1

2

3

Figure C.1: Optimal running route for the course given in sample input 3.

Your objective is to find the shortest distance one has to run to finish the race, so that we
can use this as the official distance of the course.

Input
• One line containing the number of checkpoints, n (1 ≤ n ≤ 16).

• One line containing the start coordinate of the race, xs and ys (−106 ≤ x, y ≤ 106).

• n further lines, the ith of which contains the two integer coordinate of the ith
checkpoint’s endpoints, xaiyaxbyb (−106 ≤ x, y ≤ 106).

• One line containing the end coordinate of the race, xt and yt (−106 ≤ x, y ≤ 106).

All of the checkpoints have non-zero length; however, they may overlap either with each
other or with the start and finish points.

Output
Output the shortest distance you can run to go visit all of the checkpoints in the right
order, regardless of whether you touch some of the checkpoints multiple times or in the
wrong order along the way.

The output must be accurate to an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
2
0 1
10 0 10 2
20 2 20 0
30 1

30

Sample Input 2 Sample Output 2
4
5 5
10 1 8 -1
12 3 13 0
18 3 17 0
20 1 22 -1
25 5

22.80624847

Sample Input 3 Sample Output 3
3
0 0
3 -1 2 1
8 0 8 1
5 -1 5 1
0 2

16.144380531

Problem D
Drone Control

You are designing a controller for an interesting aircraft called the Single Copter. It only
has one propeller, but the outgoing air flow is further shaped by four flaps that control
three Euler angles (pitch, roll and yaw) that help maintain the requested orientation of
the craft. Each of these flaps can assume any angle requested by the flight controller, and
the effects of the flaps being at certain angles should translate to exerting the requested
forces on pitch, roll and yaw.

Pitch Roll Yaw

Figure D.1: Pitch, roll and yaw on a Single Copter

Define the angles of the flaps to be n, e, s, and w (for “north”, “east”, “south” and
“west” respectively). The forces in the directions of pitch, roll and yaw are defined by the
following equations:

p = e− w

r = n− s

y = n+ e+ s+ w

As there are four variables and three constraints, you decided that, from the perspective
of aerodynamics, it makes sense to make the maximum of the flap angles as small as
possible, that is, you additionally want to minimise max{|n|, |e|, |s|, |w|}.

Find the best parameters to send to the Single Copter to achieve the desired pitch, yaw,
and roll.

Input
• One line containing the number q, 1 ≤ q ≤ 104, the number of requests to follow.

• i further lines, each containing three real numbers pi, ri, yi (−1 ≤ pi, ri, yi ≤ +1).

Output
Output q lines. In the i-th line, output the solution for the i-th request, four numbers ni,
ei, si, wi, separated by whitespace.

Your answer will be considered correct if the resulting pitch, roll and yaw differ by at most
10−6 from the requested ones, and the maximum of the absolute values of flap outputs
does not exceed the true value by more than 10−6.

Sample Input 1 Sample Output 1
8
0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

0.0 0.0 0.0 0.0
0.0 0.5 0.0 -0.5
0.5 0.0 -0.5 0.0
0.25 0.25 0.25 0.25
0.5 0.5 -0.5 -0.5
0.5 0.5 0.5 -0.5
0.5 0.5 -0.5 0.5
0.75 0.75 -0.25 -0.25

Problem E
Eradication Sort

The members of the No-Weather-too-Extreme Recreational Climbing society completed
their first successful summit seven years ago to this day!

At the time, we took a picture of all the members standing together in one row. However,
the photograph looks messy, as the climbers were not standing in order of height, and we
have no way to reorder them.

We will need to cut some of the climbers out of the picture.

Figure E.1: This picture of 7 (formerly 11) climbers was edited to solve Sample Input 3.

An optimal solution minimises the size and number of visible gaps in the photo. We define
the cost as the sum of the squares of the lengths of gaps left in the edited photo. For
example, if two individual climbers are removed from the photo and one pair of adjacent
climbers are removed, the total cost is 12 + 12 + 22 = 6.

Find the minimum possible cost you can reach by removing climbers.

Input
• The number of people in the photo n (1 ≤ n ≤ 106).

• n integers representing the heights of people in the photo, h1 . . . hn (0 ≤ h ≤ 106).

Output
Output the minimum cost achieved by removing climbers from the photo, such that the
remaining climbers in the photo make a non-decreasing sequence.

Sample Input 1 Sample Output 1
7
1 2 3 0 5 6 7

1

Sample Input 2 Sample Output 2
9
4 5 6 4 2 3 6 6 6

8

Sample Input 3 Sample Output 3
11
3 6 12 7 7 7 6 8 10 5 5

6

Problem F
Finding Suspicious Proteins

Little Claire studies proteins, which are sequences of amino acids. There are 20 amino acids
from which proteins are built. While amino acids all have proper names, such as alanine
or glycine, they are often denoted by single letters, so that proteins can be seen as se-
quences of different lengths, such as DTASDAAAAAALTAABAAAAAKLTABBAAAAAAATAA,
TIFLQQQQQQQQQQQ or even maybe RICKRQLL.

Comparing two proteins can be difficult, because they may contain active sites, which
determine their function in a cell, and less important parts of the sequence. Recent
advances in artificial neural networks made it possible to train a network that, given a
protein, outputs a sequence of l numbers, where each number roughly corresponds to a
feature of a protein that correlates with its possible functions in a cell. Such a sequence is
called an embedding.

Claire is particularly interested in suspicious proteins, those which are really different
from others. For this purpose, she considers the so-called Manhattan distance between
embeddings of proteins. For two protein embeddings p and q of length l, the distance
D(p, q) is computed as follows:

D(p, q) =
l∑

i=1

|pi − qi|,

where pi is the i-th element of the embedding p.

Claire wants to find k suspicious proteins in the given list of n proteins. As a baseline for
her studies, Claire wants to use the following greedy algorithm:

• Find a protein p(1) which is the most distant from the first protein in the list.

• The second protein, p(2), is chosen as the most distant protein from p(1).

• The third one, p(3), is chosen so that min{D(p(1), p(3)),D(p(2), p(3))} is maximum
possible. That is, it must be far away from both previously chosen proteins.

• All subsequent proteins p(i), 4 ≤ i ≤ k, are chosen in a similar way: the minimum
of the distances to all the previously chosen proteins should be maximum possible.

Note that, in the case of ties, the first matching protein in the list must be chosen.

Claire’s implementation works nicely for small numbers n and k, but becomes too slow as
they increase. You must find a way to optimise this.

Input
The first line contains three numbers n (3 ≤ n ≤ 104), l (1 ≤ l ≤ 100) and k (2 ≤ k ≤
min{n, 256}): the overall number of proteins, the length of each protein embedding, and
the number of proteins to choose.

Each of the following n lines starts with a protein identifier, which is a sequence of at
least one and most ten capital letters and/or numbers. Then, separated by whitespace,

come l single-digit integer numbers v1...l (0 ≤ v ≤ 9), which define the embedding of the
protein. All protein identifiers will be different.

Output
Output the identifiers of k chosen proteins, one per line, in their respective order (p(1) to
p(k)).

Sample Input 1 Sample Output 1
4 2 2
FIRST 3 4
SECOND 1 2
THIRD 8 7
FOURTH 5 6

THIRD
SECOND

Sample Input 2 Sample Output 2
6 5 3
1OGLOBIN 1 1 1 1 1
GLU10 9 9 9 9 9
8EIN 8 9 8 9 9
COLLA6EN 6 5 4 3 2
7ILK 3 4 5 6 7
0LBUMIN 1 2 0 2 1

GLU10
1OGLOBIN
7ILK

Problem G
Word Search

Find parts of a 2d grid matching a 2d word.

Input
• One line containing the number of rows and columns in the search key, rk and ck

(1 ≤ r, c ≤ 2000).

• rk further lines, each containing ck Latin characters comprising a row of the search
key.

• One line containing the number of rows and columns in the haystack, rh and ch
(rk ≤ rh ≤ 2000, ck ≤ ch ≤ 2000).

• rh further lines, each containing ch Latin characters comprising a row of the search
key.

Output
Illustrate the matching areas of the haystack by printing a grid of the same size. In
locations that are part of at least one match, print the original character from the haystack.
In other cases, print a full-stop “.” character.

Sample Input 1 Sample Output 1
3 3
ghi
lmn
qrs
5 5
abcde
fghij
klmno
pqrst
uvwxy

.....

.ghi.

.lmn.

.qrs.

.....

Sample Input 2 Sample Output 2
1 2
ab
6 4
abba
baab
abba
baab
abba
baab

ab..
..ab
ab..
..ab
ab..
..ab

Sample Input 3 Sample Output 3
4 1
n
a
n
a
7 6
ananan
nanana
ananan
nanana
ananan
nanana
batman

.n.n.n
nanana
ananan
nanana
ananan
.a.ana
....a.

Sample Input 4 Sample Output 4
2 2
oo
oo
5 5
xoooo
oxooo
ooxoo
oooxo
oooox

..ooo

..ooo
oo.oo
ooo..
ooo..

Problem H
Hedge Topiary

Our polygon-shaped bush needs a trim. We would like to cut it down to size so that the
remaining leaves of the bush form a new shape of our choosing, with its centre sitting on
the top of the stem – represented as the origin (0, 0) in both shapes.

Figure H.1: Bushes cut into beautiful shapes, as given in sample inputs 1, 2, & 3.

The original shape of the bush is a little unusual so it is not obvious how large we can
make the new shape without leaving some gaps in the design.

Find out the largest scaling factor that you can apply to the new shape to make it fit into
the old shape–meaning that there is no point contained by the re-scaled new shape that
was not contained by the old shape as well.

Input
• One line containing the number of coordinates in the new shape, n (3 ≤ n ≤ 500).

• n further lines, the ith of which contains the integer coordinates of the ith vertex in
the new shape’s polygon, xiyi (−104 ≤ x, y ≤ 104).

• One line containing the number of coordinates in the original shape, m (3 ≤ m ≤
500).

• n further lines, the ith of which contains the integer coordinates of the ith vertex in
the old shape’s polygon, uivi (−104 ≤ u, v ≤ 104).

The old and new shapes are not always convex. However, the origin point is strictly inside
(not on the bounds of) both shapes and neither of the shapes self-touch, self-intersect, or
repeat any vertices.

Output
Output the maximum amount by which we can scale the first given shape around the
origin (0, 0), such that it is fully contained by the bounds of the second given shape. This
amount may be any number greater than 0, meaning the shape may also need to become
smaller.

The output must be accurate to an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
4
-1 -1
-1 1
1 1
1 -1
4
-5 0
0 -5
5 0
0 5

2.5

Sample Input 2 Sample Output 2
8
-9 1
-9 6
-15 0
-9 -6
9 -6
15 0
9 6
9 1
6
6 -4
6 5
2 1
-2 1
-6 5
-6 -4

0.4

Sample Input 3 Sample Output 3
4
2 1
-2 1
-1 -1
2 -1
5
-5 3
-3 -4
6 -5
4 1
6 3

2

Problem I
Inconsistent Patterns

The Simpson’s Paradox is a phenomenon in statistics where a trend or pattern that
appears in different groups of data is inconsistent (disappears or even reverses) with what
we see when the groups are combined. It is named after the British statistician Edward H.
Simpson, who described it in 1951, although similar observations had been made earlier.

For example, let assume that two teams have been training for the UKIEPC 2024 and
have the following statistics for the graph and geometry problems:

• Team X has solved 81 out of 87 graph problems (success rate of approx 93%), and
192 out of 263 geometry (73%). Total is 273 out of 350 problems (78%).

• Team Y has solved 234 out of 270 graph problems (87%), and 55 out of 80 geometry
(69%). Total is 289 out of 350 (83%).

If we look per category — team X has higher success rate in both categories, but when
looking in combination, the pattern reverses, and team Y appears to have higher success
rate.

In this problem you are to construct an example of the dataset illustrating the Simpson’s
paradox. More specifically, let us assume (similarly to the example above) that there
are two teams who have been solving problems of N categories and the total number of
problems solved by each of the teams is M . Let us denote the number of the problems in
i-th category solved by Team X as ai, attempted — by bi. Similarly, let us define ci as
the number of problems solved by Team Y in the i-th category and di as the number of
problems attempted.

You are to find such ai, bi, ci and di that:

•
∑

bi =
∑

di = M

• ai ≤ bi for all i from 1 to N

• ci ≤ di for all i from 1 to N

• ai, bi, ci, di > 0 for all i from 1 to N

• ai
bi
> ci

di
for all i from 1 to N

•
∑

ai∑
bi
<

∑
ci∑
di

Input
Input file contains two integer numbers N and M (2 ≤ N ≤ 10000, 4 ∗N ≤ M ≤ 105).

Output
Output N lines — i-th of them should contain four positive integer numbers ai, bi, ci, di,
describing the dataset. Input data is selected in such a way that the solution exists.

Sample Input 1 Sample Output 1
2 350 81 87 234 270

192 263 55 80

Problem J
Jabber Network

Dave, an old Computer Science professor, still maintains a local community computer
network even after retirement. Each community member has a computer with three
networking cards, and some of these cards may be connected by a cable. They form a
connected network, and, following a long resource-saving tradition, the number of cables
is kept to the minimum possible.

The habits of all the community members are quite stable: for every two computers the
number of packets per second between them is known exactlyc. However, the network
was first assembled a long time ago, so the connections are not necessarily be optimal any
more. For two computers numbered i and j we define dij the shortest path between them,
measured in the number of cables, and cij the number of packets per second that should
be transferred from i to j. The commutation stress is defined to be the sum of cij · dij for
all i < j, and one would like to minimise it.

Dave realised that it is finally the time to upgrade the cables — after all, they do degrade
with time. He wants to take this opportunity to also optimise the network, such that the
commutation stress becomes smaller. However, he is no longer as quick as in his youth,
and his friends may get dissatisfied if too much disruption happens at once. So he decided
that he will perform the upgrade using the following scenario. For each of the old cables,
he will do the following:

1. Remove the old cable.

2. Connect the network back using a new cable, choosing the computers to connect in
such a way that the resulting commutation stress is minimum possible.

3. If there are many ways to do this, break ties by choosing the computers with the
smallest numbers: if (u1, u2) and (v1, v2) result in the same commutation stress, but
u1 < v1 (or u1 = v1 and u2 < v2), then (u1, u2) should be chosen.

1 2

34

1 2

34

1 2

34

Before One old link removed A new link added

Figure J.1: A single reconnection operation (the first one in the sample input)

Note that, since each computer only has three network cards, Dave cannot connect two
arbitrary computers on the second step: if one of them is already connected to three other
computers, it is impossible to connect it to yet another computer. Fortunately, it is not
hard to show that it is always possible to find two computers to connect: for instance,
Dave can choose the two just-disconnected computers.

Unfortunately, the task appeared to be more difficult than it seemed initially. Could you
help Dave?

Input
The first line of the input file contains an integer n (2 ≤ n ≤ 2 · 103), the number of
computers in the network.

The following n− 1 lines contain two integers each: ai, bi, where (1 ≤ ai < bi ≤ n) are the
numbers of the computers initially connected by an old cable number i. The cables are to
be removed and replaced in the order they are given in the input file. It is guaranteed
that it is possible to reach any computer from any other computer using old cables (that
is, the network is initially connected), and that no computer is connected with more than
three other computers.

The next line contains an integer d (2 ≤ d ≤ 104), the number of computer pairs that are
known to transmit data to each other.

The following d lines contain three integers each: si, ti and di, where si and ti are the
numbers of the computers which transmit data to each other (1 ≤ si < ti ≤ n), and
di (1 ≤ di ≤ 109) is the number of packets per second to be transmitted.

Output
Output n− 1 lines containing two integers each: xi, yi, where (1 ≤ xi < yi ≤ n), should
be the numbers of the computers connected by a new cable at step i.

Note that, due to the tie-breaking rule detailed above, the correct output is unique.

Sample Input 1 Sample Output 1
4
1 2
2 3
3 4
6
1 2 1
1 3 10
1 4 1
2 3 10
2 4 1
3 4 10

1 3
2 3
3 4

Problem K
Knitting

You are knitting a scarf in a striped pattern, having made strong progress on the first
few stripes. You have multiple colours available to continue creating the pattern and
would very much like that no colour appears too often – more specifically, that the colour
appearing most often still appears as few times as possible.

4 1 6 4 1 5 2 3 6 5

Figure K.1: A knitted solution to sample input 1. No colour is used more than twice, nor
is any colour repeated within 3 consecutive stripes.

Please extend the given design to fashion a nice scarf.

Input
• One line containing the number of stripes to create, n, the number of colours

available, k, and the minimum spacing between stripes of the same colour, p
(1 ≤ n, k, p ≤ 105).

• One line containing the number of stripes already knitted, m (1 ≤ m ≤ n).

• One line containing m integers, the colours of the stripes si (1 ≤ s ≤ k).

The colours of the stripes are represented as integers in [1. . .k].

Output
Output any stripe pattern starting with s1...m that does not repeat any of the colours too
soon and uses the most-frequent colour as few times as possible.

If it is not possible to create a scarf from the parameters, output impossible instead.

Sample Input 1 Sample Output 1
10 6 3
4
4 1 6 4

4 1 6 4 1 5 2 3 6 5

Sample Input 2 Sample Output 2
5 2 3
2
1 2

impossible

Sample Input 3 Sample Output 3
2 2 3
1
2

2 1

Sample Input 4 Sample Output 4
10 26 5
4
8 3 16 3

impossible

Problem L
Leg Day

You have been given a new training plan for the month, consisting of days focusing on
legs or arms interspersed with rest days. This training plan will be repeated for as any
times as necessary to get to the end of the month.

Each day of the training plan either contains the word ”rest”, in which case it is a rest
day, or if not may still contain ”leg”, in which case it is a leg day, or contains neither,
meaning that of course it is an arm day.

Produce a motivational 31-day calendar, starting on a Monday, showing what types of
exercises you will do on each day.

Input
• One line containing the number of exercises, n (1 ≤ n ≤ 31).

• n further lines, the ith of which contains the name of the ith exercise as between 1
and 50 lowercase Latin characters.

Output
Output 5 rows of UTF-8 text, each containing:

• the week number (from 1 to 5)

• Up to 7 pictographs representing the 31 days of the training plan, using glyphs from
the Unicode “Supplementary Multilingual Plane” to illustrate the exercises.

You may use any appropriate character as long as the name is a faithful illustration of
the exercise, according to the Unicode 17.0 specification. This will be judged as follows:

• The character must be printable

• For leg days, the name of the character must include “leg”

• For arm days, the name of the character must include “arm” or “biceps”

• For rest days, the name of the character must include “face”

For good training results, consistency is key: if you use a character to illustrate a type of
activity once, you must always use it to represent that type of activity, and no other type
of activity.

Sample Input 1 Sample Output 1
4
legcurls
armgains
restarms
bicepsprints

1

2

3

4

5

Sample Input 2 Sample Output 2
1
workhardplayhardresthard

1

2

3

4

5

Sample Input 3 Sample Output 3
7
overestimate
wrestling
crestfallen
pharmaceutic
forestry
elegantrestaurant
delegation

1

2

3

4

5

